Numerical Methods for the Valuation of Financial Derivatives
نویسندگان
چکیده
NUMERICAL METHODS FOR THE VALUATION OF FINANCIAL DERIVATIVES.
منابع مشابه
European and American put valuation via a high-order semi-discretization scheme
Put options are commonly used in the stock market to protect against the decline of the price of a stock below a specified price. On the other hand, finite difference approach is a well-known and well-resulted numerical scheme for financial differential equations. As such in this work, a new spatial discretization based on finite difference semi-discretization procedure with high order of accur...
متن کاملComparison of Selected Advanced Numerical Methods for Greeks Calculation of Vanilla Options
Option valuation has been a challenging issue of financial engineering and optimization for a long time. The increasing complexity of market conditions requires utilization of advanced models that, commonly, do not lead to closed-form solutions. Development of novel numerical procedures, which prove to be efficient within various option valuation problems, is therefore worthwhile. Notwithstan...
متن کاملBarrier options pricing of fractional version of the Black-Scholes model
In this paper two different methods are presented to approximate the solution of the fractional Black-Scholes equation for valuation of barrier option. Also, the two schemes need less computational work in comparison with the traditional methods. In this work, we propose a new generalization of the two-dimensional differential transform method and decomposition method that will extend the appli...
متن کاملPricing Multi-asset Financial Derivatives with Time-dependent Parameters—lie Algebraic Approach
We present a Lie algebraic technique for the valuation of multi-asset financial derivatives with time-dependent parameters. Exploiting the dynamical symmetry of the pricing partial differential equations of the financial derivatives, the new method enables us to derive analytical closed-form pricing formulae very straightforwardly. We believe that this new approach will provide an efficient and...
متن کاملA new approach to using the cubic B-spline functions to solve the Black-Scholes equation
Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005